翻訳と辞書
Words near each other
・ Axiagasta
・ Axiagasta (geometer moth)
・ Axiagasta stactogramma
・ Axial
・ Axial Age
・ Axial Biotech
・ Axial chirality
・ Axial coding
・ Axial compressor
・ Axial cut
・ Axial engine
・ Axial fan design
・ Axial flow valve
・ Axial line (dermatomes)
・ Axial mesoderm
Axial multipole moments
・ Axial osteomalacia
・ Axial pen force
・ Axial piston pump
・ Axial precession
・ Axial ratio
・ Axial Seamount
・ Axial skeleton
・ Axial symmetry
・ Axial tilt
・ Axial Turbine Stages
・ Axial-flow pump
・ Axialis IconWorkshop
・ Axiality
・ Axiality (geometry)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Axial multipole moments : ウィキペディア英語版
Axial multipole moments
Axial multipole moments are a series expansion
of the electric potential of a
charge distribution localized close to
the origin along one
Cartesian axis,
denoted here as the ''z''-axis. However,
the axial multipole expansion can also be applied to
any potential or field that varies inversely
with the distance to the source, i.e., as \frac.
For clarity, we first illustrate the expansion for a single point charge,
then generalize to an arbitrary charge density \lambda(z)
localized to the ''z''-axis.
==Axial multipole moments of a point charge==

The electric potential of a point charge ''q'' located on
the ''z''-axis at z=a (Fig. 1) equals
:
\Phi(\mathbf) =
\frac \frac =
\frac \frac - 2 a r \cos \theta}}.

If the radius ''r'' of the observation point is greater than ''a'',
we may factor out \frac and expand the square root
in powers of (a/r)<1 using Legendre polynomials
:
\Phi(\mathbf) =
\frac \sum_^
\left( \frac \right)^ P_(\cos \theta ) \equiv
\frac \sum_^ M_
\left( \frac(\cos \theta )

where the axial multipole moments
M_ \equiv q a^ contain everything
specific to a given charge distribution; the other parts
of the electric potential depend only on the coordinates
of the observation point P. Special cases include the axial
monopole moment M_=q, the axial dipole
moment M_=q a and the axial quadrupole
moment M_ \equiv q a^. This
illustrates the general theorem that the lowest
non-zero multipole moment is independent of the
origin of the coordinate system,
but higher multipole multipole moments are not (in general).
Conversely, if the radius ''r'' is less than ''a'',
we may factor out \frac and expand
in powers of (r/a)<1 using Legendre polynomials
:
\Phi(\mathbf) =
\frac \sum_^
\left( \frac \right)^ P_(\cos \theta ) \equiv
\frac \sum_^ I_
r^ P_(\cos \theta )

where the interior axial multipole moments
I_ \equiv \frac{a^{k+1}} contain
everything specific to a given charge distribution;
the other parts depend only on the coordinates of
the observation point P.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Axial multipole moments」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.